Steptronic o no steptronic

Tema en 'Serie 5 (E60/E61) (2003-2010)' iniciado por Rav4, 12 Dic 2005.

  1. VDV

    VDV Guest

    A los que os gusta el steptronic, os entiendo, si lo primero que buscais en la conducción es la comodidad.

    Pero a los que no entiendo, son a los que no entienden que haya gente como yo, que siga prefiriendo el cambio manual, despues de haber probado varios vehiculos con cambio automatico.
     
  2. beemer

    beemer Mens insanus in corpore regulinchi Miembro del Club

    Registrado:
    6 Feb 2003
    Mensajes:
    11.895
    Me Gusta:
    1.077
    Ubicación:
    Madrid
    Modelo:
    BMW R1200RT
    Unete a BMW FAQ Club Unete a BMW FAQ Club Unete a BMW FAQ Club
    que puedes esperar de un descerebrao que se divierte lanzandose a saco por una pendiente en bici... para romperse en dos :) jajajajaja :descojon:

    asi te has quedao sin pelo... :flip:
     
  3. favila

    favila Guest

     
  4. Raulro

    Raulro Guest

    A eso me refería, me acordaba que alguien lo había comentado, pero no recordaba quien. Gracias favila[:>pray
     
  5. Raulro

    Raulro Guest

    Claro que os entiendo, yo antes pensaba lo mismo hasta que probé un automático:)
     
  6. PCR

    PCR Forista Senior

    Registrado:
    2 Mar 2004
    Mensajes:
    4.839
    Me Gusta:
    0
    Ubicación:
    Costa Este

    La parte contrante... yo si te entiendo Vicente :goodman

    ¿ tu me entiendes a mi ?? almorzamos el sabado y conocemos al amigo Gesterri ?? :)

    Si que me conoces :descojon:
     
  7. ares_

    ares_ Forista Senior

    Registrado:
    5 Abr 2005
    Mensajes:
    5.623
    Me Gusta:
    3
    Ubicación:
    Valencia
    Yo me apunto con vuestro permiso. :zartyman :dan: ;-)
     
  8. PCR

    PCR Forista Senior

    Registrado:
    2 Mar 2004
    Mensajes:
    4.839
    Me Gusta:
    0
    Ubicación:
    Costa Este

    ¿¿ con nuestro permiso ?? :roll: ¡¡¡ pero si tu eres el subdirector general ( despues de VDV ) !!!

    enga, enga, ve poniendo un OT en forma de post si no me quieres ver enfadao :)

    Ahhh, y que no nos falle el nuevo Gesterri, que tiene que pagar los gintonic´s:zartyman
     
  9. ares_

    ares_ Forista Senior

    Registrado:
    5 Abr 2005
    Mensajes:
    5.623
    Me Gusta:
    3
    Ubicación:
    Valencia
    Volviendo al tema.
    La primera vez que conduje un steptronic fué allá por el año 98 con un 730 d de 184 cv. del padre de un amigo. En su dia me encantó y me dije que tenía que tener algún dia un coche con ese cambio. El resultado ya lo sabeis. Han pasado 8 años y todavia sigo pisando embrague...:roll:
     
  10. efenese71

    efenese71 Forista Senior Miembro del Club

    Registrado:
    31 Mar 2005
    Mensajes:
    6.849
    Me Gusta:
    9.871
    Ubicación:
    3/4 Oficina 1/4 Casa
    Modelo:
    BMW 530diox F10
    Unete a BMW FAQ Club Unete a BMW FAQ Club Unete a BMW FAQ Club
    Hace tiempo hicimos una encuesta-recopilatorio acerca de manual-automático. Creo que se preguntaba sobre las preferencias pero los resultados son perfectamente aplicables a la selección efectuada. Quiero decir: "prefiero esto y lo he comprado". Pues bien, más menos era un empate técnico. Al grano, que me enrollo. ¿Por qué existen 3.000 € de diferencia entre uno y otro cambio si la esencia del mecanismo será parecida y el nivel de producción debe ser parejo? Direis, pues la centralita que gestiona las variables del cambio. Pues bien, id con 3.000 € al Corte Ingles a ver que pedazo de ordenador os entregan y su capacidad de programación. Únicamente por ese detalle, ya paso del cambio automático :) .
     
  11. Berki

    Berki Forista Legendario Miembro del Club

    Registrado:
    22 Nov 2005
    Mensajes:
    14.850
    Me Gusta:
    733
    Ubicación:
    Out
    Unete a BMW FAQ Club Unete a BMW FAQ Club Unete a BMW FAQ Club
    efenstre cuanto tiempo, que es de tu vida?
     
  12. Clue

    Clue Forista

    Registrado:
    7 Feb 2006
    Mensajes:
    2.007
    Me Gusta:
    0
    Ubicación:
    l 43º20'12N-L 3º20'18W
    Yo tengo el Steptronic ése. Y no me gusta el "resbalamiento" en la aceleración. Yá sé que no es el cambio en sí, sino el convertidor de par, pero me recuerda a la vespino al acelerar...
     
  13. VDV

    VDV Guest

    Me lo has quitado de las teclas, eso mismo es lo que pienso yo ;-)

    Prefiero "sufrir" pisando un embrague, que sentir el resbalamiento del convertidor [-(
     
  14. Berki

    Berki Forista Legendario Miembro del Club

    Registrado:
    22 Nov 2005
    Mensajes:
    14.850
    Me Gusta:
    733
    Ubicación:
    Out
    Unete a BMW FAQ Club Unete a BMW FAQ Club Unete a BMW FAQ Club
    Planetary Gear Sets [​IMG] Automatic transmissions contain many gears in various combinations. In a manual transmission, gears slide along shafts as you move the shift lever from one position to another, engaging various sized gears as required in order to provide the correct gear ratio. In an automatic transmission, however, the gears are never physically moved and are always engaged to the same gears. This is accomplished through the use of planetary gear sets.
    The basic planetary gear set consists of a sun gear, a ring gear and two or more planet gears, all remaining in constant mesh. The planet gears are connected to each other through a common carrier which allows the gears to spin on shafts called "pinions" which are attached to the carrier .
    One example of a way that this system can be used is by connecting the ring gear to the input shaft coming from the engine, connecting the planet carrier to the output shaft, and locking the sun gear so that it can't move. In this scenario, when we turn the ring gear, the planets will "walk" along the sun gear (which is held stationary) causing the planet carrier to turn the output shaft in the same direction as the input shaft but at a slower speed causing gear reduction (similar to a car in first gear).
    If we unlock the sun gear and lock any two elements together, this will cause all three elements to turn at the same speed so that the output shaft will turn at the same rate of speed as the input shaft. This is like a car that is in third or high gear. Another way that we can use a Planetary gear set is by locking the planet carrier from moving, then applying power to the ring gear which will cause the sun gear to turn in the opposite direction giving us reverse gear.[​IMG]
    The illustration on the right shows how the simple system described above would look in an actual transmission. The input shaft is connected to the ring gear (Blue), The Output shaft is connected to the planet carrier (Green) which is also connected to a "Multi-disk" clutch pack. The sun gear is connected to a drum (yellow) which is also connected to the other half of the clutch pack. Surrounding the outside of the drum is a band (red) that can be tightened around the drum when required to prevent the drum with the attached sun gear from turning.
    The clutch pack is used, in this instance, to lock the planet carrier with the sun gear forcing both to turn at the same speed. If both the clutch pack and the band were released, the system would be in neutral. Turning the input shaft would turn the planet gears against the sun gear, but since nothing is holding the sun gear, it will just spin free and have no effect on the output shaft. To place the unit in first gear, the band is applied to hold the sun gear from moving. To shift from first to high gear, the band is released and the clutch is applied causing the output shaft to turn at the same speed as the input shaft.
    [​IMG]Many more combinations are possible using two or more planetary sets connected in various ways to provide the different forward speeds and reverse that are found in modern automatic transmissions.
    Some of the clever gear arrangements found in four and now, five, six and even seven-speed automatics are complex enough to make a technically astute lay person's head spin trying to understand the flow of power through the transmission as it shifts from first gear through top gear while the vehicle accelerates to highway speed. On newer vehicles, the vehicle's computer monitors and controls these shifts so that they are almost imperceptible.
    Clutch Packs
    [​IMG] A clutch pack consists of alternating disks that fit inside a clutch drum. Half of the disks are steel and have splines that fit into groves on the inside of the drum. The other half have a friction material bonded to their surface and have splines on the inside edge that fit groves on the outer surface of the adjoining hub. There is a piston inside the drum that is activated by oil pressure at the appropriate time to squeeze the clutch pack together so that the two components become locked and turn as one.
    One-Way Clutch A one-way clutch (also known as a "sprag" clutch) is a device that will allow a component such as ring gear to turn freely in one direction but not in the other. This effect is just like that of a bicycle, where the pedals will turn the wheel when pedaling forward, but will spin free when pedaling backward.
    A common place where a one-way clutch is used is in first gear when the shifter is in the drive position. When you begin to accelerate from a stop, the transmission starts out in first gear. But have you ever noticed what happens if you release the gas while it is still in first gear? The vehicle continues to coast as if you were in neutral. Now, shift into Low gear instead of Drive. When you let go of the gas in this case, you will feel the engine slow you down just like a standard shift car. The reason for this is that in Drive, a one-way clutch is used whereas in Low, a clutch pack or a band is used.
    [​IMG]Bands
    A band is a steel strap with friction material bonded to the inside surface. One end of the band is anchored against the transmission case while the other end is connected to a servo. At the appropriate time hydraulic oil is sent to the servo under pressure to tighten the band around the drum to stop the drum from turning.
    Torque Converter[​IMG]
    On automatic transmissions, the torque converter takes the place of the clutch found on standard shift vehicles. It is there to allow the engine to continue running when the vehicle comes to a stop. The principle behind a torque converter is like taking a fan that is plugged into the wall and blowing air into another fan which is unplugged. If you grab the blade on the unplugged fan, you are able to hold it from turning but as soon as you let go, it will begin to speed up until it comes close to the speed of the powered fan. The difference with a torque converter is that instead of using air, it uses oil or transmission fluid, to be more precise.
    A torque converter is a large doughnut shaped device (10" to 15" in diameter) that is mounted between the engine and the transmission. It consists of three internal elements that work together to transmit power to the transmission. The three elements of the torque converter are the Pump, the [​IMG]Turbine, and the Stator. The pump is mounted directly to the converter housing which in turn is bolted directly to the engine's crankshaft and turns at engine speed. The turbine is inside the housing and is connected directly to the input shaft of the transmission providing power to move the vehicle. The stator is mounted to [​IMG]a one-way clutch so that it can spin freely in one direction but not in the other. Each of the three elements have fins mounted in them to precisely direct the flow of oil through the converter
    With the engine running, transmission fluid is pulled into the pump section and is pushed outward by centrifugal force until it reaches the turbine section which starts it turning. The fluid continues in a circular motion back towards the center of the turbine where it enters the stator. If the turbine is moving considerably slower than the pump, the fluid will make contact with the front of the stator fins which push the stator into the one way clutch and prevent it from turning. With the stator stopped, the fluid is directed by the stator fins to re-enter the pump at a "helping" angle providing a torque increase. As the speed of the turbine catches up with the pump, the fluid starts hitting the stator blades on the back-side causing the stator to turn in the same direction as the pump and turbine. As the speed increases, all three elements begin to turn at approximately the same speed.
    Since the '80s, in order to improve fuel economy, torque converters have been equipped with a lockup clutch (not shown) which locks the turbine to the pump as the vehicle speed reaches approximately 45 - 50 MPH. This lockup is controlled by computer and usually won't engage unless the transmission is in 3rd or 4th gear.
    Hydraulic System
    [​IMG] The Hydraulic system is a complex maze of passages and tubes that sends transmission fluid under pressure to all parts of the transmission and torque converter. The diagram at left is a simple one from a 3-speed automatic from the '60s. The newer systems are much more complex and are combined with computerized electrical components. Transmission fluid serves a number of purposes including: shift control, general lubrication and transmission cooling. Unlike the engine, which uses oil primarily for lubrication, every aspect of a transmission's functions are dependant on a constant supply of fluid under pressure. This is not unlike the human circulatory system (the fluid is even red) where even a few minutes of operation when there is a lack of pressure can be harmful or even fatal to the life of the transmission. In order to keep the transmission at normal operating temperature, a portion of the fluid is sent through one of two steel tubes to a special chamber that is submerged in anti-freeze in the radiator. Fluid passing through this chamber is cooled and then returned to the transmission through the other steel tube. A typical transmission has an average of ten quarts of fluid between the transmission, torque converter, and cooler tank. In fact, most of the components of a transmission are constantly submerged in fluid including the clutch packs and bands. The friction surfaces on these parts are designed to operate properly only when they are submerged in oil.
    Oil Pump
    The transmission oil pump (not to be confused with the pump element inside the torque converter) is responsible for producing all the oil pressure that is required in the transmission. The oil pump is mounted to the front of the transmission case and is directly connected to a flange on the torque converter housing. Since the torque converter housing is directly connected to the engine crankshaft, the pump will produce pressure whenever the engine is running as long as there is a sufficient amount of transmission fluid available. The oil enters the pump through a filter that is located at the bottom of the transmission oil pan and travels up a pickup tube directly to the oil pump. The oil is then sent, under pressure to the pressure regulator, the valve body and the rest of the components, as required.
    Valve Body
    [​IMG] The valve body is the control center of the automatic transmission. It contains a maze of channels and passages that direct hydraulic fluid to the numerous valves which then activate the appropriate clutch pack or band servo to smoothly shift to the appropriate gear for each driving situation. Each of the many valves in the valve body has a specific purpose and is named for that function. For example the 2-3 shift valve activates the 2nd gear to 3rd gear up-shift or the 3-2 shift timing valve which determines when a downshift should occur.
    The most important valve, and the one that you have direct control over is the manual valve. The manual valve is directly connected to the gear shift handle and covers and uncovers various passages depending on what position the gear shift is placed in. When you place the gear shift in Drive, for instance, the manual valve directs fluid to the clutch pack(s) that activates 1st gear. it also sets up to monitor vehicle speed and throttle position so that it can determine the optimal time and the force for the 1 - 2 shift. On computer controlled transmissions, you will also have electrical solenoids that are mounted in the valve body to direct fluid to the appropriate clutch packs or bands under computer control to more precisely control shift points.
    Computer Controls
    [​IMG]The computer uses sensors on the engine and transmission to detect such things as throttle position, vehicle speed, engine speed, engine load, brake pedal position, etc. to control exact shift points as well as how soft or firm the shift should be. Once the computer receives this information, it then sends signals to a solenoid pack inside the transmission. The solenoid pack contains several electrically controlled solenoids that redirect the fluid to the appropriate clutch pack or servo in order to control shifting. Computerized transmissions even learn your driving style and constantly adapt to it so that every shift is timed precisely when you would need it.
    Because of computer controls, sports models are coming out with the ability to take manual control of the transmission as though it were a stick shift, allowing the driver to select gears manually. This is accomplished on some cars by passing the shift lever through a special gate, then tapping it in one direction or the other in order to up-shift or down-shift at will. The computer monitors this activity to make sure that the driver does not select a gear that could over speed the engine and damage it.
    Another advantage to these "smart" transmissions is that they have a self diagnostic mode which can detect a problem early on and warn you with an indicator light on the dash. A technician can then plug test equipment in and retrieve a list of trouble codes that will help pinpoint where the problem is.
    Governor, Vacuum Modulator, Throttle Cable
    These three components are important in the non-computerized transmissions. They provide the inputs that tell the transmission when to shift. The Governor is connected to the output shaft and regulates hydraulic pressure based on vehicle speed. It accomplishes this using centrifugal force to spin a pair of hinged weights against pull-back springs. As the weights pull further out against the springs, more oil pressure is allowed past the governor to act on the shift valves that are in the valve body which then signal the appropriate shifts.
    Of course, vehicle speed is not the only thing that controls when a transmission should shift, the load that the engine is under is also important. The more load you place on the engine, the longer the transmission will hold a gear before shifting to the next one.
    There are two types of devices that serve the purpose of monitoring the engine load: the Throttle Cable and the Vacuum Modulator. A transmission will use one or the other but generally not both of these devices. Each works in a different way to monitor engine load.
    The Throttle Cable simply monitors the position of the gas pedal through a cable that runs from the gas pedal to the throttle valve in the valve body.
    The Vacuum Modulator monitors engine vacuum by a rubber vacuum hose which is connected to the engine. Engine vacuum reacts very accurately to engine load with high vacuum produced when the engine is under light load and diminishing down to zero vacuum when the engine is under a heavy load. The modulator is attached to the outside of the transmission case and has a shaft which passes through the case and attaches to the throttle valve in the valve body. When an engine is under a light load or no load, high vacuum acts on the modulator which moves the throttle valve in one direction to allow the transmission to shift early and soft. As the engine load increases, vacuum is diminished which moves the valve in the other direction causing the transmission to shift later and more firmly.
    Seals and Gaskets
    An automatic transmission has many seals and gaskets to control the flow of hydraulic fluid and to keep it from leaking out. There are two main external seals: the front seal and the rear seal. The front seal seals the point where the torque converter mounts to the transmission case. This seal allows fluid to freely move from the converter to the transmission but keeps the fluid from leaking out. The rear seal keeps fluid from leaking past the output shaft.
    A seal is usually made of rubber (similar to the rubber in a windshield wiper blade) and is used to keep oil from leaking past a moving part such as a spinning shaft. In some cases, the rubber is assisted by a spring that holds the rubber in close contact with the spinning shaft.
    A gasket is a type of seal used to seal two stationary parts that are fastened together. Some common gasket materials are: paper, cork, rubber, silicone and soft metal.
    Aside from the main seals, there are also a number of other seals and gaskets that vary from transmission to transmission. A common example is the rubber O-ring that seals the shaft for the shift control lever. This is the shaft that you move when you manipulate the gear shifter. Another example that is common to most transmissions is the oil pan gasket. In fact, seals are required anywhere that a device needs to pass through the transmission case with each one being a potential source for leaks.
     
  15. efenese71

    efenese71 Forista Senior Miembro del Club

    Registrado:
    31 Mar 2005
    Mensajes:
    6.849
    Me Gusta:
    9.871
    Ubicación:
    3/4 Oficina 1/4 Casa
    Modelo:
    BMW 530diox F10
    Unete a BMW FAQ Club Unete a BMW FAQ Club Unete a BMW FAQ Club
    ¿Como que cuanto tiempo? Una semana sin computador de 3.000 € :descojon:
     
  16. Clue

    Clue Forista

    Registrado:
    7 Feb 2006
    Mensajes:
    2.007
    Me Gusta:
    0
    Ubicación:
    l 43º20'12N-L 3º20'18W
    Joé Berki, eres una eminencia...

    ¡Qué capacidad de síntesis! ¡Y qué fluidez en inglés!

    Por no mencionar las ilustraciones ad hoc...
     
  17. Berki

    Berki Forista Legendario Miembro del Club

    Registrado:
    22 Nov 2005
    Mensajes:
    14.850
    Me Gusta:
    733
    Ubicación:
    Out
    Unete a BMW FAQ Club Unete a BMW FAQ Club Unete a BMW FAQ Club
    :flip::flip::flip::flip::flip:
     
  18. ares_

    ares_ Forista Senior

    Registrado:
    5 Abr 2005
    Mensajes:
    5.623
    Me Gusta:
    3
    Ubicación:
    Valencia
    Ahora tradúcelo Berki para los no iniciados...:)
     
  19. Berki

    Berki Forista Legendario Miembro del Club

    Registrado:
    22 Nov 2005
    Mensajes:
    14.850
    Me Gusta:
    733
    Ubicación:
    Out
    Unete a BMW FAQ Club Unete a BMW FAQ Club Unete a BMW FAQ Club
    Viene a decir, que el cambio automático es una "pasada" tanto de precio como de conducción... para los piratas...
    SI hay alguna duda pongase en contacto con nuestro asesor Vicente De Valencia

    Salu2
     
  20. tcruells

    tcruells Guest

    steptronic

    Hola, acabo de adquirir un 320d 150 cv steptronic del 2003 i no se como ponerlo en modo sport, creo que solo tiene el modo manual i automatico, alguien puede ayudarme??
     
  21. Berki

    Berki Forista Legendario Miembro del Club

    Registrado:
    22 Nov 2005
    Mensajes:
    14.850
    Me Gusta:
    733
    Ubicación:
    Out
    Unete a BMW FAQ Club Unete a BMW FAQ Club Unete a BMW FAQ Club
    Holas, aunque este no es tu sub-foro, vamos a ver para ponerlo en modo sport has de girar la palanca hacia la izquierda desde el modo D y no te asustes porque ves que no cambia, solo que cambia a mas altas vueltas
     
  22. Gorki

    Gorki Forista Legendario

    Registrado:
    27 Abr 2004
    Mensajes:
    8.246
    Me Gusta:
    30
    Ubicación:
    Donosti,paraiso natural!
    Aprovechando que ando por tierras gaditanas y llevo varios dias con el 530i amanualense :) tengo que admitir que si que es verdad que da otra vidilla el manual,siempre y cuando vaya durito de suspensiones y en mi caso no es asi;en el 99% de mis desplazamientos por otra parte no busco esa "vidilla" ;-)

    He de decir sin miedo a ser lapidado publicamente por VDV o cualesquiera de sus seguidores que......






















































    ...prefiero el steptronic :roll:
     

Compartir esta página